
MusiXML - XML music notation file format

1. Why XML Schema?
2. The MusiXML DTD
3. The MusiXML Schema
4. The top level structure of MusiXML

1. Why XML Schema?

When we define a new data format, there are some tasks that have to be solved again and again:

* Which character set do we use?
* How do we handle i18n?
* How do we define data types across programming languages?
* How do we express hierarchies?
* Which mechanism do we use to make the format extensible?
* We have to define and agree in a formal language in which we express the format definition (and

we have to learn it).
* How do we express references/pointers?

This is much work to do in each case and I didn't even mention the concrete problem to be solved.

XML 1.0 solves almost all of these general problems. You probably haven't even to learn the XML
syntax because it's a simplified syntax you know from HTML. The additional benefit is that the formal
definition is stored in a language independant way in a separate document (the DTD). A programer
who wants to use the format doesn't even have to implement the constraints since they are tested by a
parser with well defined APIs.

When programers who work with e-commerce or music notation saw it, they immediately knew and
agreed that this is what they needed. The main problem is, that XML 1.0 emerged from a (text)
document oriented domain. This is the reason why there is no way to define data types, to use
inheritance, define keys or reuse general modules in different formats. With XML 1.0 you have to learn
a Syntax for XML and a different for DTDs.

These problems are addressed by XML Schema.

2. The MusiXML DTD

In spring 1998 I started to develop the MusiXML DTD (view the MusiXML DTD in your browser) with
the experience of developing an unpublished binary format and the knowledge of some more notation
formats . Here is an example that uses the MusiXML DTD.

3. The MusiXML Schema

The MusiXML DTD works fine, but there are many constraints that are only checked by the
application. As explained in Why XML Schema? , this is a problem when you want others to
understand and implement these constraints.

Music Notation - www.music-notation.info - Copyright 1997-2019, Gerd Castan

1

MusiXML.DTD
../../Musixmldtd/index.html
../compmus/notationformats.html
../compmus/notationformats.html
incipit1.fsc
#whySchema
http://www.music-notation.info/
http://www.gerdcastan.de/

MusiXML Schema is fully compliant with XML Schema . The example and the MusiXML Schema are
part of my unit tests , using Xerces2-J .

You can look at a simplified browser fiendly view of MusiXML to get an overview. (I know that the
styesheet that generates the overview needs some improvement :-) Anyway it helps.

4. The top level structure of MusiXML

One main goal is to store each data only once instead of holding them consistent. And we consider
separating content from style. Assume we represent musical sheets for a symphony orchestra. To see
the problem, we need only the score and the violin 1 part. Using a hierarchical representation, the
score looks like this:

work -> page -> system -> staff -> measure -> <content> and the violin 1
sheets look like this: work -> page -> system -> staff -> measure ->
<content>

Both have the same structure. They have different instances of page, system and staff, but they share
parts of <content>. The structure of the graphical hierarchy makes it necessary to store two copies of
<content>. The simple idea is to store <content> in a separate place, the logical domain, and to refer
to it. Now our structure looks like this:

work -> page -> system -> staff -> measure -> reference to part of
<content> work -> page -> system -> staff -> measure -> reference to part
of <content>

But the work embeds everything, so we change the structure to

<work> <body> <content> </body> <filter> <extract> (rendering information
for score with reference to <content>) </extract> <extract> (rendering
information for violin 1 with reference to <content>) </extract> </filter>
</work>

Since <extract> contains declarative instructions, how to process <content>, I saved some hierarchies
there, to make it easier to process. The instructions in <extract> have to be declarative and not
something like do this and then do that, since procesing goes in both directions: <content> has to be
rendered using these instructions and <content> has to be changed using the instructions if the user
changes something on the screen. The logical domain <body> contains almost all the the knowledge a
music notation program can have about music. It's about the same information that is in the linear
input mode of some music notation programs.

Then we have a graphical domain that is contained in the <filter> element. It contains <extract>
elements. Each <extract> element defines a different printout: the score and each part that is to be
printed (In relational databases we would use the term view insted of extract, but we need the term
view in the object oriented context).

Music Notation - www.music-notation.info - Copyright 1997-2019, Gerd Castan

2

MusiXML.xsd
http://www.w3.org/XML/Schema#dev
incipit1.fscs
MusiXML.xsd
http://www.junit.org/index.htm
http://xml.apache.org/xerces2-j/index.html
../../MusiXMLSchema/index.html
http://www.music-notation.info/
http://www.gerdcastan.de/

